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ABSTRACT: In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion 
modulo {2n±k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by 
the existing {2n ± k} binary-2-RNS converters, which are particular inefficient for larger values of n. The experimental 
results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to 
significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the 
related state of the art. Delay improvements of 2.17 times with only 5%area increase can be achieved if a proper 
selection of the {2n± k} moduli is performed. 
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I. INTRODUCTION 
 

Residue number system (RNS) is a nonweighted numbering system, which uses remainders to represent numbers. Its 
modular characteristics offer the potential for high-speed and parallel processing based on carry-free arithmetic [1]. The 
basic arithmetic operations (add, subtract, and multiply) are independently implemented over multiple channels, 
defined by the moduli set that supports each particular RNS. The RNS moduli set is set up by defining the moduli, 
where mi represents positive relatively prime integers. A number X is represented in RNS by its residues xi = (X)mi, 
where xi is the remainder of the division of X by mi . Conversion from weighted number system to RNS (binary to-
RNS or forward conversion), and vice versa (RNS-to-binary or reverse conversion), is required in order to implement a 
complete RNS-based processing system. Subsequently, RNS is usually used on computational intensive applications, 
such as digital signal processing, filtering, convolution, correlation, fast Fourier transform computation, and 
cryptography [2]–[4]. Initially, research on  

 
RNS was mainly focused on the three modulus set {2n − 1, 2n, 2n+ 1} [5]. More recently, different RNS moduli sets 

have been proposed in order to increase the dynamic range (DR) and/or reduce the width of the RNS channels, such as 
{2n −3,  

 
2nn−1, 2n +1, 2n +3} in [6] and [7], {2n−1, 2n+β , 2n +1} in [8], {2n − 1, 2n, 2n + 1, 2n+1 − 1} in [9], and {2n − 1, 2n,2n + 

1, 22n + 1} in [10]. More recently, the moduli set with a DR up to (8n  
 
+ 1) bits have been proposed. This set [11] is composed by the moduli {2n+β , 2n−1, 2n+1, 2n − 2ାଵ

ଶ
 + 1, 2n + 2ାଵ

ଶ
+ 1, 

2n+1 + 1}, requiring arithmetic units modulo {2n±1}[12], and generic arithmetic units modulo {2n±k}[13] for the 
modulo{2n − 2ାଵ

ଶ
 + 1, 2n + 2ାଵ

ଶ
+ 1} channels. 

The use of the moduli {2n± k} with unrestricted k values, is rather useful to obtain larger RNS moduli sets [4], 
resulting in circuits with improved metrics. With larger moduli sets for the same DR, the operands are smaller, and 
consequently more compact arithmetic units are achieved, with reduced delay and circuit area requirements. However, 
most of the forward converters presented in the state of the art [14]–[19] are limited in terms of the number of bits per 
channel, or are unable to scale for larger DR, given their exponential growth with the number of bits per channel, 
mostly having structures based on lookup tables, such as read only memories (ROMs). 

The structures proposed in [15] are based on weighted reduction, considering a serial, serial–parallel, or fully parallel 
approaches. An optimized version of these structures, considering the periodicity property, was proposed in [16]. 
However, the periodicity property can only be used to improve the conversion when shorter period values for modulo 
{2n ± k} can be found. More recently, a novel conversion structure has been proposed in [17] that overcome this 
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dependency using the distributive property instead of periodicity, allowing for unrestricted modulo values. In [18], 
multimoduli architectures are proposed, using a weight selection algorithm, with binary additions and ROMs. These 
architectures allow performing the same arithmetic operations for different moduli within the same structure, but suffer 
from the same lack of scalability for larger DR. Furthermore, since the brief herein presented is focused on simple 
single-modulo conversion structures, these are not herein considered. In [19], the analysis and implementation of a 
computer-aided design (CAD) tool is presented, capable of generating a structural description of binary-to- RNS 
converters, for a DR up to 21 bits. The proposed method actually allows achieving forward converters for any DR, as 
herein shown. 

Herein, a novel ROM-less generic forward conversion structure for a DR of m = jn-bit, using {2n ± k} moduli, 
is proposed, considering n ≥ 2. The proposed approach splits the jn input bits into j input sets, and computes the 
respective residue value using modular additions and constant multiplications. The use of constant multipliers in the 
proposed scheme does not impose the exponential area increase as the ROM-based topologies [14] proposed in the 
related state of the art. To evaluate the performance of the proposed structure, the experimental results were obtained. 
These results suggest that the proposed forward conversion topology allows improvements of 85% in area and 15% in 
delay when compared with the ROM-based modulo {2n ± k} binary-2-RNS converters proposed in [14]. Moreover, 
improvements up to 50% on delay can be achieved when comparing with the ROM-less-based converters proposed in 
[19], with a minimal increase in circuit area resources, 10% higher on average. 

This brief is organized as follows. Section II introduces the formulation adopted to design the modulo {2n±k} binary-
2-RNS conversion structure described in Section III. Section IV presents the experimental results, and compares the 
proposed topology with the related state of the art. The conclusion is presented in Section V. 

 
II. FORMULATION OF RNS CONVERSION MODULO {2n ± k} 

 
 Consider a integer X with m-bit inputs, herein represented as {X [m-1],…, X [1], X[0]} with X = ∑ 2݅ିଵ

ୀ  .x[i], a 
forward converter for modulo {2n ± k} transforms X into a residue value r with wmod bits, {r[wmod-1] ,…,r[1], r[0]}, with 
wmod =[log2 (2n  ± k)] ; wmod = n for modulo {2n-k} and wmod = n+1 for modulo {2n+k}, when 0 < k < 2n. The residue 
modulo {2n ± k} of the input value X can be achieved by computing the integer division of X by 2n ± k, but it is a 
costly operation to obtain the remainder.  

The approach herein considered to derive (X) 2
n

 ± k is based solely on simple modular arithmetic operations, given the 
propriety 

 (2n) 2n
 ± k = (2n ± k k) 2n

 ± k = ( k) 2
n

 ± k…………….(1) 

and with Xv	≡ X[(v+1). n-1:v.n], and considering X as the binary representation of an integer to be converted, with a DR 

of jn bits, where X[msb:lsb] represents the msb to lsb bits of integer X. The residue modulo {2n-k} of the value X with jn 

bits can be computed as 

(X) 2
n
  - k = (2(j-1)nX[jn-1:(j-1)n+…+2

2n
  X[3n-1:2n] + 2n X[2n-1:n] + X[n-1:01]) 2n

 – k 

 =(2(j-1)nXj-1 +…+ (2n-k+k) (2n-k+k) X2 +(2n-k+k) X1 + X0) 2
n
 – k 

 =(kj-1Xj-1 +…+ k2x2+kx1+x0) 2
n

 – k 

 =(∑ ିଵ݅ݔ݅݇
ୀ ) 2n – k………………………………......(2) 

Identically, the residue modulo {2n+k} of X can be computed as 

(X) 2
n
 + k = (-kj-1Xj-1 +…+ k2X2 –kX1+X0) 2

n
 + k  

 = (∑ .
[షభమ ]
ୀ k2ix2i - (∑ .

[షమమ ]
ୀ k2i+1x2i+1) 2

n
 + k ……….........(3) 

The modular subtraction in (3) can be computed as 

(-Xl) 2
n

 + k = (2
n
 =1-xl +k+1) 2

n
 + k 

 + ( തܺl+ k +1) 2
n

 + k .........................................................(4) 

Given (4), (3) can be rewritten as 

(X) 2
n
 + k = (∑ .

[షభమ ]
ୀ k2ix2i + (∑ .

[షమమ ]
ୀ k2i+1( തܺ2i+1+k+1)) 2n

 + k 
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 = (∑ .
[షభమ ]
ୀ k2ix2i + (∑ .

[షమమ ]
ୀ k2i+1 തܺ2i+1  

+ ∑ .
[షమమ ]
ୀ k2i+1 (k+1) 2

n
 + k ………………………………(5) 

Where 

(∑ .
[షమమ ]
ୀ k2i+1 (k+1) 2

n
 + k) 

Is a constant (cst). 

III. HARDWARE STRUCTURES 
 
To the best of the author’s knowledge, the existing generic modulo {2n ± k} binary-2-RNS converters are based on 

the weight-selection approach [14]-[19]. 
In the first approach proposed in [14], each n-bit segment of the binary input value is passed through a lookup table, 

outputting the corresponding residue value. Each table has an n-bit input and an n-bit output. The outputs of these 
lookup tables are then added by an adder-tree structure and further reduced modulo by an additional lookup table and a 
final {2n ± k} modulo adder. This conversion structure is herein referred as Piestrak [14]. Given the exponentially area 
increases of the lookup tables, implemented by ROMs, this structure is only efficient for small values of n. In [15], a 
conversion structure considering weight selection based only on multiplexers and modular adders is proposed, herein 
referred to as Premkumar. The same author extend his work in [16] using the periodicity property, which can also be 
employed in the remaining state of the art. However, this technique can only be used to improve the conversion when 
shorter period values for modulo {2n ± k} can be found. More recently, a new converter was proposed in [17], allowing 
the best conversion implementations for DR up to 64 bits with modulo up to 6 bits. This architecture is based on a 
depth-bounded carry-save addition, with a carry-free reduction of the sum and carry vectors. The final reduction is 
accomplished using a modified modulo adder and a lookup table. For larger moduli and DRs, the usage of the lookup 
table makes it once more not scalable. In [20], another weight selection-based conversion approach is proposed. 
However, in this case, the resulting structure is based solely on full adders, allowing it to scale to larger moduli 
channels and DRs. The authors also made available a CAD tool to facilitate the implementation of the proposed 
conversion structures [19]. However, the developed tool only considers DR up to 21 bits. In order to obtain conversion 
structures for the considered DRs, an augmented version of this CAD tool was developed, considering the proposed 
method [20]. The version implemented by us now allows for the unrestricted DR, and was designed to use the same 
optimized arithmetic structures used in the herein proposed conversion structures. The conversions structures generated 
by the new tool are herein referred as Soudris. 

Given the inadequacy of most of the related state-of-the-art structures, for larger values of n, two new generic binary-
2-RNS conversion structures are herein proposed for modulo {2n ± k},only requiring arithmetic operations. These 
conversion units only require constant multiplication and addition units: 1) Proposed I structure targets a more compact 
structure with a serialized modular reduction approach, which is an extension of the previous work presented in [21], 
but allowing now to compute X modulo {2n ± k} with DR of jn bits instead of the previous 4n bits; 2) Proposed II 
structure targets faster conversion considering a parallel approach. In these proposed structures, a restriction to the 
width of k (wk ) is considered, allowing to simplifying the modular reduction step, namely wk ≡ [log2 k] ≤ n/2. Even 
with this restriction of wk, the ki constant value in (2) and (3) can be greater than 2n ± k for i ≥ 2, since for k < 2n/2 
results in ki< 2n.i/2.  In these cases, the resulting modulo constant (ki) 2n ± k can be precomputed and reduced modulo 
{2n ± k} providing a constant value with wk

i  bits, where wk
i = [log2((ki) 2n ± k)] The maximum width of k values is 

represented by wkmax = max(wk
i), ∀ 0 ≤ i ≤ j − 1. 

Proposed II structure for modulo {2n ± k} forward conversion is based on a parallel approach. In this approach, each 
partial operation (ki・Xi ) is first reduced modulo {2n ± k} and only then added to obtain the final residue value. Thus, 
computation is performed in two stages: the first stage computes the constant multiplication vectors and the second 
stage performs the addition of all those vectors. This structure performs the modular reduction of each calculation, 
using the modulo {2n ± k} Carry-Save-Adder [22], instead of adding all terms and reducing then iteratively at the end, 
as in Proposed I. 

The considered modular ki constant multiplication block computes ((ki) {2
n

 ± k} xi) 2n
 ± k as 

 
((ki) 2n

 ± k. xi) 2n
 ± k =(ki

[wk
i
-1:0]. X [(i+1).n-1:i.n]) 2

n
 ± k 

  = (P1
[n+wk

i
-1:0]) 2

n
 ± k 

  = (2n. P1
[n+wk

i
-1:n]) + P1

[n-1:0]) 2
n

 ± k 
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  = ( k. P1
[n+wk

i
-1:n]) + P1

[n-1:0]) 2
n

 ± k 
  = (P2

[wk
i
wk-1:0]) + P1

[n-1:0]) 2
n

 ± k ……………………...(6) 
 

 
Fig. 1. Proposed II binary-2-RNS converter modulo {2

n
 ± k} 

 
However, when wk

i + wk > n, the value P2 has more than n bits, requiring an additional reduction steps, computed as 
((ki) 2n

 ± k. xi) 2n
 ± k 

 = ( k. P2
[wk

i
+wk-1::n]) + P2

[n-1:0]) 2
n

 ± k 

 = (P3
[wk

i
+2wk-n-1:0]) + P2

[n-1:0]) + p1[n-1:0])2n
 ± k…………..(7) 

Therefore, the ki constant modular multiplication can be implemented with two constant multipliers when (wk
i +wk ) 

≤ n, or with an additional constant multiplier and a 3:2 modular compressor [22], when (wk
i +wk ) > n. The resulting 

modular k i constant multiplication block is shown in Fig. 1. The additional resources for the more complex 
implementation case are represented with dashed lines. After the computation of ((ki) 2n

 ± k. xi) 2n
 ± k , the resulting carry-

and save vectors are feed into a modular adder tree to obtain the final result (X) 2n
 ± k. In the particular case of the 

binary-2-RNS modulo {2n +k}, an additional input is required in the modular adder tree to compute the addition of the 
correction factor cst, from (6). 

 
IV. EXPERIMENTAL RESULTS 

 
In order to fully evaluate the proposed binary-2-RNS converters and the related state of the art, all structures were 

described in Very High Speed Integrate Circuits Hardware Description Language and mapped to an application-
specified integrated circuit technology, in particular for the United Microelectronics Corporation (UMC) 0.13-μm 
CMOS technology from UMC [23]. The ROM results have been obtained by synthesizing the available ROM sizes in 
the synchronous via-1 ROM compiler for the UMC 0.13-μm high-speed logic process technology, and the others were 
estimated based on the real obtained values. Both synthesis and mapping results were performed using Design Vision 
E-2010.12-SP4 from Synopsys. 

In order to take into account the impact of different values for n and k, the presented experimental results were 
obtained for a variation of n ∈ [6, 32]. For the value k, the best case is obtained for k = 3, and for the worst case, the 
values k = 2n/2−1 and ((ki) 2

n
 ± k= 2n−1 are considered. The worst case value for k correspond to the worst case scenario 

for Proposed I and Proposed II structures implying the most complex and costly multipliers. Since for the Soudris 
structure the worst case scenario cannot be easily determined, and to simplify the analysis, the same value of k, k = 2n/2 
−1, is used as the worst case value. For the Premkumar structure, the presented values are for k = 3, since no significant 
variations occur for other values of k. In order to properly evaluate the cost of the several conversion structures, RNS 
with four and eight moduli channels are considered, resulting in a DR of 4n and 8n, respectively. The obtained 
experimental results for circuit area and delay are shown in Fig. 2(a), (b), (d), and (e). 

 As expected from the theoretical analysis [22], the ROM-based conversion structure proposed in [14] imposes 
significantly worst area metrics even for small DR. As the DR increases and with it the size of the ROM, the area of 

http://www.ijmrset.com


 International Journal of Multidisciplinary Research in Science, 
Engineering and Technology (IJMRSET) 

   Available online: www.ijmrset.com                                                          
         e-ISSN: 2394-8752, p-ISSN: 2394-8791 

     Volume-02, Issue-11, November 2015             

                                                         

© 2017, IJMRSET                                                         |     An ISO 9001:2008 Certified Journal   |                                             1502 

 

 

ROM-based conversion structures significantly increases, due to the exponential increase of the ROM area. The 
Premkumar [15] structure has worst area metrics, as the Piestrak converter, for small modulo and DR. However, the 
Premkumar structure has less area than the Piestrak for larger modulo, for modulo channels with more than 10 bits. 
Nevertheless, the Premkumar structure requires up to 6.85 times more area resources than Proposed II. The Soudris 
conversion structure always requires more area resource for k = 3 when compared with Proposed II. However, when 
considering the worst case of k, the Soudris converters require less circuit area than the proposed converters. Note that 
the worst case scenario for the herein proposed conversion structures is not realistic since it considers that all the 
constant  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Experimental results for binary-2-RNS converter with areas. (a) DR 4n - modulo 2n

 ± k  (b) DR 8n - modulo 2n
 ± k 

and (c) j = 4, n = 20, varying k and delays, (d) DR 4n - modulo 2n
 ± k  (e) DR 8n - modulo 2n

 ± k  and (f) j = 4, n = 20, 
varying k. 

 
 

 
 

Fig. 3. Ratio of the energy consumption for j = 4, n = 20, varying k. 
 
multipliers are in the most complex form. Still, less area demanding conversion units can be obtained with the proposed 
conversion structures, when compared with the related state of the art, in particular for larger values of n. Given the 
parallel approach of Proposed II structure, when compared with Proposed I, slightly higher area requirements are 
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observed. From the obtained area results, it can also be concluded that the area increases with the number of moduli 
channels ( j ), since more constant multipliers and adders are needed, in particular for the more parallel Proposed II 
structure. The obtained experimental results suggest that the ROM-based related art (Piestrak) can in fact be faster, but 
only for values of n up to 18 bits. The modular adder-based conversion structure from Premkumar has worst delay 
metric than Piestrak for n up to 18 bits, but achieves better delay metrics for n greater than 20 bits. The Soudris 
conversion structure has the worst delay for the considered structures, nevertheless for n greater than 22 bits better 
delay metrics than the Piestrak conversion structure can be achieved. Regarding the proposed conversion structures, 
Proposed II conversion structure is able to achieve lower delay metrics than the related state of the art for n as low as 8 
bits. Proposed II structure is always faster for n greater than 18 bits, even for the worst case of k, for acceptable area 
costs. The delay improvement inversion point depends on the number of modulo channels (j) and the considered k 
values. For example, the Premkumar converter allows to achieve better delay metric regarding ours in the worst cases. 
However, requiring on average 5.42 times more area resources. On average, the obtained results, for k = 3 and for the 
worst value of k, suggest that Proposed I structure requires on average 91%–87% less area, and is on average 10% 
faster to 16% slower than the Piestrak and Premkumar conversion structures, respectively. Regarding the Soudris 
structure, it allows for a 12% faster conversion at a cost of 44% more area resources. The experimental results suggest 
that Proposed II structure is on average 85%–80% smaller and 30%–5% faster than the Piestrak and the Premkumar 
structures, respectively. When compared with the Soudris structure, the experimental results suggest that Proposed II 
structure is on average 40% faster at a cost of 56% more circuit area. Note that this average is obtained from k = 3 and k 
= worst case, which does not allow to fully interpret the resulting metrics. To better understand the variation of these 
metrics with the variation of the k value, the Premkumar, the Soudris, and Proposed II conversion structures were 
synthesized for all possible k values for n = 20, considering a DR of 4n bits and modulo {2n − k}, as shown in Fig. 2(c) 
and (f). From these results, it can be seen that the Premkumar structure has a stable value for the delay metric, meaning 
that the obtained results are less dependent of the values of k. However, this invariance is achieved at significantly 
higher area costs, up to 18 times more area resources than Proposed II, being outside of the considered scale in Fig. 
2(c). The obtained results also suggest that Proposed II structure is always faster than Soudris, in particular for smaller 
values of k. For the first 100 k values, the structure herein proposed achieves an average delay improvement of 48% 
when compared with the Soudris structure, at a cost of 36% more area resources. If the best 16 k values of each 
structure are considered, the delay of Proposed II structure is on average 2.17 times faster with just 5% additional area 
resources, resulting in an AT performance metric improvement of 108%. When considering the energy consumption 
per conversion, Proposed II structure suggests the largest variation, according to the selected k value, as shown in Fig. 
3. Nevertheless, the obtained results suggest that with an adequate selection of the moduli set, (i.e., the k values) 
significantly less energy is required for the conversion. For example, for a moduli set with four channels, the Soudris 
and the Premkumar structures require 128% and 594% more energy, respectively, than Proposed II structure, with a 
modulo conversion requiring an average of 110 nJ. The results also suggest that, if the moduli set are extended to 16 
channels, the Soudris and the Premkumar structures will require 50% and 264% more energy than Proposed II 
structure, respectively. From this, it can be concluded that Proposed II conversion structure allows for significantly 
more efficient conversion metrics, in particular if the k values are adequately selected. 

 
V. CONCLUSION 

 
In this brief, two generic and scalable modulo {2n ± k} binary-2-RNS conversion structures are proposed for jn-bit 

DRs. The proposed approach splits the jn input bits into j input sets, and computes the respective residue value using 
modular additions and constant multiplications, implementing ROM-less structures. To assess the gains achieved by the 
proposed structures, the experimental results were obtained for 4n- and 8n-bit DRs. The obtained experimental results 
suggest that the proposed conversion approach allows for average delay improvements between 10% and 40%, with a 
worst average area cost between 44% and 56%, regarding the best existing state of the art. Nevertheless, if a proper 
selection of the used k values is performed, 2.17 times faster conversion operations with only 5% extra area resources 
can be achieved, with AT performance metric improvements above 100%. 
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