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ABSTRACT: In this paper, we obtain a coupled common fixed point theorem in modular spaces. We also give an 
example to illustrate our main theorem. 
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I. INTRODUCTION 
 
The concept of a modular space was intiated by Nakano [5]  and was redefined and generalized by Musielak and Orlicz 
[7].  Since then, several fixed point and common fixed point theorems in the frame work of modular spaces have been 
investigated. For more details see ([1] – [4], [6], [8], [10] – [20], [22] ). Bhaskar and Lakshmikantham [21] introduced 
the concept of coupled fixed points and later several authors obtained coupled fixed point and coupled common fixed 
point theorems in various spaces. Recently Abbas et al. [9]  introduced W -compatible mappings in cone metric spaces. 

In this paper, combining these concepts, we obtain a coupled common fixed point theorem for Jungck type mappings in 
modular spaces. We also give an example to illustrate our main theorem. 

Now we give some basic definitions on modular spaces. 

 

Definition 1.1 Let X  be an arbitrary real or complex vector space. A functional )[0,: X  is called modular if 
for any Xyx , , the following conditions hold: 

)( 1 0=)(x  if and only if 0=x , 

)( 2 )(|=|)( xx   for every scalar   with 1|=| , 

)( 3 )()()( yxyx    whenever 1=   and 0,  .  

 Note that 0}  0)(:{=   asxXxX  is called a modular space.  

Remark 1.2 Let X  be a modular space. Then 

)(i )(
2

xx  





  for all Xx  

 Proof. )(=(0))(0
2
1

2
1=

2
xxxx  






 






 , from )( 3  and )( 1 . 

)(ii )(2)(2)( yxyx    for all Xyx ,  
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Proof. )(2)(2)(2
2
1)(2

2
1=)( yxyxyx  






  , from )( 3 .  

Definition 1.3 Let X  be a modular space. 

)(i  The sequence }{ nx  in X  is called  -convergent to Xx  if and only if .0=)(lim xxn
n



  

)(ii  -Cauchy if and only if 0=)(lim
,

mn
mn

xx 

 . 

)(iii  A subset C  of X  is called  -closed if the  -limit of a  -convergent sequence of C  is still in C . 

)(iv  A subset C  of X  is called  -complete if any  -Cauchy sequence in C  is  -convergent and its  -limit 

belongs to C . 

)(v   is said to satisfy the 2 -condition if 0)(2 nx  whenever 0)( nx  as n . 

)(vi  we say that   has the Fatou property if )(inflim)( yxyx n
n




 for all Xy  whenever 

0)(  xxn  as n .  

Definition 1.4 Let X  be a modular space. We say that  XXT :  is  -continuous if 0)(  TxTxn  

whenever 0)(  xxn  as n .  

Definition 1.5 Let X  be a modular space and  XXXF :  and  XXg : . Then the pair ),( gF  is 

said to be  -compatible if 0))),((),((  nnnn yxFggygxF  and 0))),,((),((  nnnn xyFggxgyF  

as n  whenever there exist sequences }{ nx  and }{ ny  in X  such that tgxyxF n
n

nn
n

=lim=),(lim


 and 

tgyxyF n
n

nn
n




=lim=),(lim  for some t  and t  in X .  

Definition 1.6 Let X  be a modular space and  XXXF :  and  XXg : . Then the pair ),( gF  is 

said to be  - weakly compatible if )),((=),( yxFggygxF  and )),((=),( xyFggxgyF  whenever there exist 

x  and y  in X  such that gxyxF =),(  and gyxyF =),( .  

Definition 1.7 Let X  be a modular space and  XXXF : . Then F  is said to be  -continuous  if  

)),(),((lim=0=)),(),((lim xyFxyFyxFyxF nn
n

nn
n



  whenever )(lim=0=)(lim yyxx n

n
n

n



 . 

Definition 1.8 ([9]) Let X  be a nonempty set. An element XXyx ),(  is called  

)(i  a coupled coincidence point of XXXF :  and XXg :  if ),(= yxFgx  and ),(= xyFgy . 

)(ii  a common coupled fixed point of XXXF :  and XXg :  if ),(== yxFgxx  and 
),(== xyFgyy .  

Kaushik et al.[19]introduced the following  -admissible mapping concept which is a generalization of the concept 
introduced by Mursaleen et al. [15].  
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Definition 1.9 ([19])Let X  be a nonempty set and  R22: XX be a function.Let XXXF :  , 
XXg : be mappings. Then F  and g  are said to be  -admissible if 

1))),(),,(()),,(),,(((1)),(),,((  uvFvuFxyFyxFgvgugygx   for all Xvuyx ,,, .  

 If )mapdentity (= IIg ,then the above definition is the concept of Mursaleen et al.[15]. 

 We say that the pair ),( gF  is triangular  -admissible if F  and g  are  -admissible and if 

,1)),(),,(( 2211 yxyx 1)),(),,(( 3322 yxyx  1,)),(),,(( 3311 yxyx Xyyyxxx 321321 ,,,,, . 

 Now we prove our main result.  

II. MAIN RESULT 
 

Theorem 2.1 . Let X be a  -complete modular space, where   satisfies the 2 -condition. Let 

 XXXF :  and  XXg :  be mappings satisfying   

(2.1.1).  )()(  XgXXF  ,  

(2.1.2).  vu
yxMvuFyxFgvgugygx ,

,  )),(),(( )),(),,((    for all Xvuyx ,,, , where (0,1)  and 
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2
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2
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,
2

),(
2

),(
2
1

)),,(()),,(()),,((
)),,((),(),(

max=,
,

xyFgvuvFgy

yxFguvuFgx
uvFgvvuFguxyFgy

yxFgxgvgygugx

M vu
yx








 

(2.1.3).  F  and g  are  -continuous,  

(2.1.4).  the pair ),( gF  is  -compatible, 

(2.1.5) (a)  1))),(),,((),,(( 000000 xyFyxFgygx  and  

(2.1.5) (b) 1))),(),,((),,(( 000000 yxFxyFgxgy  for some ,, 00 Xyx   

(2.1.6)  the pair ),( gF  is triangular  -admissible. 

Then F  and g  have a coupled coincidence point in XX  . 

Further if we assume that 

(2.1.7)  1)),(),,((1,)),(),,((  gugvgxgygvgugygx   

whenever ),( yx  and ),( vu  are coupled coincidence points of F  and ,g  

then F  and g  have a unique coupled common fixed point.  
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Proof. Let Xyx 00 , satisfying (2.1.5)(a) and (2.1.5)(b).From (2.1.1) , there exist sequences }{ nx  and }{ ny  in 

X  such that  

),(=1 nnn yxFgx  , ),(=1 nnn xyFgy  , 0,1,2,=n (1)  

From (2.1.5)(a), we have  

.(1)from ,1)),(),,((
(2.1.6)  from  1,))),(),,(()),,(),,(((

(1)from ,1)),(),,((
(2.1.6)  from  1,))),(),,(()),,(),,(((

(1)from  1,)),(),,((
1))),(),,((),,((

3322

22221111

2211

11110000

1100

000000










gygxgygx
xyFyxFxyFyxF

gygxgygx
xyFyxFxyFyxF

gygxgygx
xyFyxFgygx









 

Continuing in this way, we have  

 .   1)),(),,(( 11 ngygxgygx nnnn   (2) 

 Similarly from (2.1.5)(b), we can obtain  

 .   1)),(),,(( 11 ngxgygxgy nnnn   (3) 

 

Let )}(),({max= 11   nnnnn gygygxgxR  . 

Using (2),  consider  

1,1
,

1111

1121

  

)),(),(( )),(),,((
)),(),((=)(













nynx

nynx

nnnnnnnn

nnnnnn

M

yxFyxFgygxgygx
yxFyxFgxgx






(4) 

 where  

.

)
2
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2
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1

,)
2
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2

(
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1

),(),(),(
),(),(),(

max=
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M








 

Consider  

 )(),(max2
)( from ),()(

2
=

2

211

3211

2112
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nnnn
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gxgxgxgx
gxgxgxgx
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Similary 
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 )(),(max2
2 211

2


 





 

nnnn
nn gygygygygygy

 . 

Thus .},{max= 1
1,1

, 


nn
nynx

nynx RRM  

(4)becomes },{max )( 121   nnnn RRgxgx  . 

Similarly using(2.1.2) and (3),we have },{max )( 121   nnnn RRgygy  . 

Thus  

 },{max 11   nnn RRR   (5) 

 If 11 =},{max  nnn RRR  for some n  then from (5), we have 

11    nn RR   which in turn yields that 0=1nR . 

By proceeding as in the above we can show that .0,=0,= 32  nn RR  

Thus }{ ngx  and }{ ngy  are constant Cauchy sequences. 

Suppose nnn RRR =},{max 1  for all .n  

Then from (5), we have nn RR  1   for all .n  

Thus 11  RR n
n   for all n  

0  as n . 

Thus  

 .  0)(  0)( 11   nasgygyandgxgx nnnn   (6) 

Suppose either }{ ngx  or }{ ngy  is not Cauchy. 

Then there exists 0>  for which we can find sub sequences }{ )(kmgx , }{ )(kngx , }{ )(kmgy  and }{ )(kngy  with 

kknkm >)(>)(  such that for every k  

 .)}(),({max )()()()(   knkmknkm gygygxgx  (7) 

Moreover, corresponding to )(kn , we can choose )(km  in such a way that it is the smallest integer with 
)(>)( knkm  and satisfying (7). Then  

 .<))}(2()),(2({max )(1)()(1)(  knkmknkm gygygxgx  
 (8) 

 From (7), we have  
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  (8). from,))(2()),(2(max<
))(2()),(2(max

))(2()),(2(max

)1.2(  Remarkfrom,
))(2())(2(
)),(2())(2(

max

)(
),(

max=

)}(),({max

1)()(1)()(

)(1)()(1)(

1)()(1)()(

)(1)(1)()(

)(1)(1)()(

)(1)(1)()(

)(1)(1)()(

)()()()(































































kmkmkmkm

knkmknkm

kmkmkmkm

knkmkmkm

knkmkmkm

knkmkmkm

knkmkmkm

knkmknkm

gygygxgx
gygygxgx

gygygxgx

ii
gygygygy
gxgxgxgx

gygygygy
gxgxgxgx

gygygxgx

 

From (6) and since   satisfies the 2 -condition, we have  

  =)}(),({maxlim )()()()( knkmknkm
k

gygygxgx 


 (9) 

Using (2) and triangular property of  , we have 

1)),(),,(( 1)(1)(1)(1)(  knknkmkm gygxgygx . 

Now from (2.1.2), we have 

1)(,1)(
1)(,1)(

1)(1)(1)(1)(1)(1)(1)(1)(

1)(1)(1)(1)(

)()(

 

)),(),(()),(),,((
)),(),((=

)(

















knyknx
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M

yxFyxFgygxgygx
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(10) 

Where 
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Consider 

(8) from )),(2(<
)1.2(  Remarkfrom,))(2())(2(

)(=)(
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1)()()(1)(

1)()()(1)(1)(1)(
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Similarly )).(2(<)( 1)()(1)(1)(   knknknkm gygygygy   
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Consider  

)( from ),()(
2

=
2

3)()()(1)(

)()()(1)()(1)(
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Similarly 
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Thus  (10)  becomes  
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Thus  
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Letting k  and using (6), (9) and 2 -condition, we get  

  . It is a contradiction. 

Hence }{ ngx  and }{ ngy  are Cauchy sequences. Since X  is  -complete space, there exist Xyx ,  such that 

xgxn   and ygyn  . 

Since the pair ),( gF  is -compatible, we have 0)),()),(((  nnnn gygxFyxFg  and 

0)),()),(((  nnnn gxgyFxyFg . 

Since F  is  -continuous, we have 0)),(),((  yxFgygxF nn  as n . 

Now  
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compatibleg)(F,andcontinuous  are F and g since ,  0
1.2(i)Remark  and )( from
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isnas

yxFgygxFgygxFyxFgyxFggx

yxFgygxFgygxFgx

nnnnnnnn

nnnn

 

Thus ).,(= yxFgx  

Similarly we can show that ),(= xyFgy . 

Thus ),( yx  is a coupled coincidence point of F  and g . 

Claim: If  (u,v) is another coupled coincidence point of F  and g , then gugx =  and gvgy = . 

By (2.1.7), we have 1)),(),,(( gvgugygx . 
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Consider  

1.2(i)Remark  from )},(),({max =
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1
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Similarly 

)}.(),({max )( gvgygugxgvgy    

Thus  

)}(),({max 
)(
),(

max gvgygugx
gvgy
gugx















  

which in turn yields that gugx =  and gvgy = . Hence the claim. 

Denote pgx =  and qgy = . 

Then ),(=),(=)),((=)(= qpFgygxFyxFggxggp , since  -compatibility of ),( gF  implies  -weakly 
compatibility of ),( gF . 

Similarly ),(= pqFgq . Thus ),( qp  is a coupled coincidence point of F  and g . 

By the claim we have gpgx =  and gqgy = . 

Thus gpp =  and gqq = . 

Hence pgpqpF ==),(  and qgqpqF ==),( . 

Hence ),( qp  is a coupled common fixed point of F  and g . 

Suppose ),( qp   is another coupled common fixed point of F  and g .  

Then from (2.1.7), we have 1)),(),,((  qgpggqgp .  

http://www.ijmrset.com


 International Journal of Multidisciplinary Research in Science, Engineering and Technology 
(IJMRSET) 

          Available online: www.ijmrset.com                                                                               e-ISSN: 2394-8752, p-ISSN: 2394-8791 

               Volume-03, Issue-09, September 2016      

 
© 2017, IJMRSET                                                    |     An ISO 9001:2008 Certified Journal   |                                                   390 

 

)1.2(  Remarkfrom )},(),({max =
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Similarly  

)}(),({max )( qqppqq   . 

Thus 

max })(),({max )}(),({ qqppqqpp    

which in turn yields that qqpp  =,= . 

Thus ),( qp  is the unique coupled common fixed point of F  and g . 

Now, we give an example to illustrate Theorem 2.1 .  

Example 2.2 Let 1= lX  , where ixxx ||==||)(  for 1lx . Define 111: lllF   and 11: llg  by
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 )(),(max
4
3

 )()(
8
3  =

gvgygugx
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Case(b): suppose at least one of ||||||,||||,|| uyx  and ||||v  is greater than 1. 

Then 0=)),(),,(( vuyx . 

Thus in both cases, (2.1.2) is satisfied with 
4
3= .One can easily verify the remaining conditions.Clearly (0,0)  is the 

unique coupled common fixed point of F and g. 

III. CONCLUSION  
 
By choosing , F and g in Theorem 2.1, one can obtain several fixed point results in modular spaces. 
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