

e-ISSN: 2395 - 7639

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH

IN SCIENCE, ENGINEERING, TECHNOLOGY AND MANAGEMENT

Volume 9, Issue 6, June 2022

INTERNATIONAL **STANDARD** SERIAL NUMBER INDIA

Impact Factor: 7.580

0

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

RCC Box Culverts Outperformed other culverts such Pipe Minor Bridge Slab Culverts though 3D Analytical Model Modelling (STAAD PRO.)

MANISH KUMAR, ABHISHEK SHARMA

Structural Engineering, CBS Group of Institutions, Haryana, India

ABSTRACT: An investigation of the design of a concrete RCC Box is conducted in this thesis. Results reveal that in most situations, models and manual approaches for structural analysis are indistinguishable. If care is not taken while modelling according to certain concepts, unintentional constraints may end up being included. This might have a significant impact on the reaction, but it's tough to tell whether one looking at ULS or SLS envelopes. Modeling using rigid shell parts at frame corners produced unintended constraint most often. It was determined that errors and undesirable outcomes might be readily caused by a lack of verification and difficulty in comprehending data. A model's accuracy doesn't matter as much as if it doesn't introduce any mistakes, since the differences between models are so minor. For the sake of simplicity, we may claim that avoiding mistakes is more essential than modelling precisely. In order to avoid mistakes in 3D modelling, an analytical model should be readily tested with smaller models. It is important to note that these recommendations only apply to building constructions; when analyzing the reaction of existing structures, alternatives are required. Culverts were fixed using STAAD PRO. Manual solutions and commercially available software (STAAD PRO) were compared to see how they fared. As a precautionary measure against foundation collapse and to keep excessive settlement and differential settlement at bay, it is essential that the net maximum bearing pressure beneath the structure's foundation be compared to the safe maximum ground pressure. Overheating of the visible soil connector or excessive soil fluctuations may result in the collapse of the entire structure. Before making a final design for a building, two conditions must be considered to determine whether the proposed geometry and the structural design are appropriate or not. Critical loading conditions are assessed, and Limit State concepts are used for the construction of building and foundation components. The end-to-end condition and the performance-level condition are checked.

KEYWORDS: concrete RCC Box, STAAD PRO, 3D analytical model, pipe minor bridge slab culverts

I. INTRODUCTION

In situations when a drain or channel has to cross a road but has a low discharge and limited bearing capacity, box culverts are employed. Where the discharge hole is smaller than 15m2 and the road crosses the canal at a moderately high embankment, culverts are always less expensive than bridges. Reinforced concrete box culverts are available in precast or cast-in-place varieties. In most cases, the proportions are square, but if they aren't, the span length frequently exceeds the height of the entrance. Depending on the design, a box culvert may have a single cell entrance or many. They regulate irrigation and municipal water flow and drainage, storm water management, and a slew of other tasks. Researchers in culvert design and construction are encouraged by the reasons outlined above.

The design of India and many other developing countries is based on the standard design of advanced nations. It is possible that the conventional plans for concrete box culverts in India are inappropriate due to the country's varying climate and soil conditions. Standard drawings for different types of loading & grades of concrete, reinforcement grade of concrete box culverts in India can be deduced by using this STAAD PRO.

II. STRUCTURAL ANALYSIS OF RCC BOX CULVERT

Reinforced concrete box culverts are often limited in span to 5 meters; however, this is not a hard and fast rule. When a road is embankment, it is possible that the box's top will be lower than the road level. Because of the increased

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580

Volume 9, Issue 6, June 2022

DOI: 10.15680/IJMRSETM.2022.0906036

thickness of the slab and walls, a single box culvert becomes uneconomical if the planned discharge is substantial. Multiple boxes may be cast side by side in a single mound. Figure 1 shows a typical view of a box culvert.

Fig. 1 Box Culvert - half section and half elevation.

ANALYSIS & DESIGN METHOD

When designing box culverts, end bases are tested and considered as solid frames with equal bending times. The end times in private joints are usually calculated using a temporary distribution method.

Structural members and the foundation are designed using Limit State concepts in accordance with critical loading conditions. Consideration is given to both serviceability and ultimate limits.

Modeling

Figure 2 shows the 3D shell components used to build the bridge, described in accordance with the analysis formula using the "STAAD PRO" tool, with a diameter of 300mm on the top slab, 350mm on the bottom slab, and 300mm on the outer wall.

According to the general rule of thumb, the size of the element should not exceed the thickness. The model was based on unbroken concrete sections as the investigation focused on the features of the expandable material. Concrete with a modulus of 30 GPa stretch, 0.2 poisoning ratio, and a thermal expansion coefficient of 10-5 as selected.

Fig. 23D shell components

EFFECTIVE WIDTH METHOD

It is believed that a moving live load would change the culvert's effective width (length across span). In the design of culverts, this breadth has a considerable impact on the consideration of live loads.

 $bef = \alpha e (1 - a / L0) + b1$

bef = The effective width of the slab where the load is applied.

L0 = Active time.

a = The distance between the gravitational force of the fixed load from the nearest Support.

B1 = Width of the concentration area of the load.

 α = Staying has the following values depending on the ratio b / L0.

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

III. DESIGN OF BOX CULVERT

Concrete box culverts are the focus of this investigation. First, the bending times for each meter of culvert were analyzed using assumptions that the walls and roof were of a certain thickness. In order to calculate the bending moments, we considered the culvert to be a rigid frame or a continuous beam with equal bending moments at each of its four spans. In order to determine the probable loads and pressures, bending moments were computed. In most cases, there are three things to keep in mind:

Culvert is free: full load and additional charges on high slab, wall weight, high ground pressure and live load charge on walls.

- Durability: Minimum grade of concrete shall be M30 for sever environmental exposure condition.
- Cover to any reinforcement shall not be less than 40mm

		Top slab		H	Sottom slal	9			Outer wall		
	Moment	Moment	Top slab	Moment	Moment	Bottom slab	Min.	Moment	Moment	Span	Wall
Load Case	in Mid-	at End	shear at	in Mid-	at End	shear at	Axial	at top	at	Moment	shear at
	Span	Support	deff	Span	Support	deff	force	-	bottom		deff
		at face			at face			at face	at face	Earth Face	
	kN-m	kN-m	kN	kN-m	kN-m	kN	KN	kN-m	kN-m	kN-m	
*Partial Safety for Venification of Structural Strength (Basic Combination)	-57.5	27.6	104.2	12	11	11	0.0	40.4	40.4	1.0	61.7
*Partial Safety for Ventification of Serviceability Limit State (Rare Combination)	42.6	19.0	2	53.1	6.01-	10	9	28.8	27.4	3.1	5
*Partial Safety for Vemfication of Serviceability Limit State (Quasi- permanent Combination)	-33.4	17.5		42.2	-16.6			25.4	24.0	-1.5	5
*Dry Combination for Design of Foundation (Combination 1)	8	31		71.2	-19.7	90.2			9		i.

IV. RESULT AND DISCUSSIONS

Concrete box culvert difficulties may be solved using STAAD PRO software. In the application process, one kind of culvert was evaluated so that the STAAD PRO software could be adapted to various types of box culverts. We verified our STAAD PRO output with results from a manual solution and results from commercially available software to ensure our calculations were accurate. The STAAD PRO program's findings were compared against the outcomes of previously solved issues in order to verify the program's correctness. A structure's limit state of collapse refers to the strength and stability of a structure when it is exposed to the most extreme combinations of design loads. So, this limit state makes sure that no component of the structure or the whole thing will fall apart or become unstable when subjected to a variety of predicted overloads.

4.9 SUMMARY OF FACTORED MOMENT AND SHEAR

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

Verification of structuralstrength top slab

ULTIMATE LIMIT STATE 30 fek = Grade of Concrete N/mm As per clause 6.4.2.8, IRC:112-2011 \mathbf{f}_{rd} = 13.40 N/mm For Basic Combination $\mathbf{f}_{\rm od}$ = 16.75 For Accidental Combination N/mm² \mathbf{f}_{od} = 13.40 N/mm For Seismic Combination 31000 MPa E. = fy = 500 Grade of steel N/mm \mathbf{f}_{Yd} = 435 N/mm² For Basic Combination 500 fyd N/mm For Accidental Combination fyd = 435 N/mm² For Seismic Combination Refer Fig. 6.2 of IRC:112-2011 For steel reinforcement, simplified bilinear diagram is used Minimum strain in steel reinforcement = 0.87 fy/Es Es 2.0E+05 MPa 31000 MPa E.= = Cu = fcd*b*(3/7xu,lim + 2/3*4/7xu,lim) 17/21*fcd*b*xu Refer Chaper 5 of Reinfroced Concrete Limit State = 0.8095 *fcd*b*xu Design by Ashok K. Jain = cg of compression block from top 0.416 xu = fyd*Ast Tu = $R_{lim} = M_{u,lim}/bd^2$ = 0.8095fcd*(xu lim/d)*(1-0.416*xu lim/d) Accidental Basic Seismic Comb Comb Comb 0.62 0.58 0.62 xu,im/d $R_{hm} = M_{a,lim}/bd^2$ 4.97 5.99 4.97 Here Rim is in MPa Calculation of Reinforcement Width of section b 1000 mm = Depth of section D = 300 mm Clear cover = 40

Diagram: SIDL +EC: BM

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

DOI: 10.15680/IJMRSETM.2022.0906036

Moment on the section	Top slab Top End support		Top slab Bottom Mid Span			
	Basic	Carrielsand	Rentman	Basic	dane i hearth	likebenen
	Comb	2ª comba	Preselle .	Comb	Counter	Permit
Actual moment (KNm)	27.6	275 6	228 6	57.5	10626	518 55
Ъ	1000	2030303	_ 010303	1000		37030303
D	300	1.561	W33	300	10223	17552
c	40	412	12	40	13	10
d	255.0	3912.22	2017/22	246.0	105201.43	257 -
fed	13.40	6.84		13.40	6 189	1. J. A.C.
fya	435	1.8841	4585	435	1790	30.85
xu im/d	0.62	3567.12	121 (2)	0.62	21.52	15.67.0
$R_{sls} = M_{sls}/bd^2$	4.97	SERVER	1.275	4.97	5005	4 355
Malim (KNm)	323	155	1000	301	50.00	in the
	OK	ILCOP.	100%	OK	1002	. PETE
Ast Rea.	253	10.00	18	559	21218	57.21
Dia of bar (main tension) (mm)	10			12		
Spacing (mm)	200	16253	16.23	100	1000	(973)
+ dia of bar (main tension) (mm)	10	15	53	0	101	83
Spacing (mm)	200	10.03	1000	200	2020	1. Carlos
Ast provided (so mm)	785	A Sector	3510	1131	1.	-
% Steel	0.31			0 44		
Dia of bar (main compresion) (mm)	0	10	14-	10	1	- 5 C
Spacing (mm)	200	1000	2023	200	1020	11-010
Accordence (mm ²)	0	83	101	393	83.5	12003
fine	2.5	10.00	2.44	2.5	10.5	26-4C
f.ik	500	1.7.8	4.75	500	ALC: N	1.15
-1 16 6 1 (2) -6 TP C -112 2011	500		1000	200	1000100	
$A_{s,min} = 0.26 f_{sm} b d/f_{sk} \ge 0.0013 b d$	332	828	0.0005	320	1000	1228
A _{ct}	268520	- Jacobs to	In the second	254668		heres
fct,eff	2.9	255	26.55	2.9	1652	2155
$k_c = 0.4 \{ 1 - s_c / (k_l f_{cl,clf} h/h) \} \le 1$	0.4	1201	201	0.4	23	19.20
For Bending or bending combined with axial	force			100000		
k	1.0000	2222	. COLOR	1.0000	. CECENE	10000
Sk.	500	0.000	手約	500	37323	10125
cl 12.3.6 (4) of IRC :112-2011				2-2-20		
$A_{\delta,\min} = k_c \ k \ f_{ct,eff} A_{ct} / s_s$	623	61.22	16.25	591	6556	1000
8	OK	- mitanter	- mailan	OK	Janaia-	- winterhiter
As.max = 0.025 Ac (main tension)	7500	- M. 199	1983	7500	10.22	VIII I
el 16.5.1.1 (2) of IRC :112-2011	OK	neilf.	10115	OK	10 (IS	0.015
As.max = 0.04 Ac (tension + compresion)	12000	1666	103003	12000	122.22	VEREN I
x (mm)	31	1	1. F	45	14	
x/d	0.123	2025	n stier	0.184	12.0512	3.522
	OK	11575	E)*	OK		12515.
z (mm)	242	hut	. with	227	2578	10.20
MR (KNm)	83	15	<u> 1</u>	112	2	12
	OK	100(057)	1085	OK	1005_	100051
Calculation of Transverse Steel as per G	lause 16.	5.1.1	202 E		53F	
AsT min = 20% of main reinforcement	124.6		St	118.2	9	
Dia of bar (Horizontal Bar) (mm)	10	1	80 E	10	23	
Spacing (mm)	250		S	250	<u>.</u>	
Acces of distribution has (mar ²)	214.0			214.2		
Area of distribution par (fiffit)	0V			0V		
	UN			NO	6. C	

Т

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

Moment on the section	Top slab Top End support			Top slab Bottom Mid Span		
	Rare	Suggessi	Quasi- Perma.	Rare	theogeneit	Quasi- Perma.
	Comb	23mile	Comb	Comb	Ebenallo	Comb
Actual moment (KNm)	19.0	102.68	17.5	42.587	47,023	33.4
b	1000][8080011	1000	1000	Theorem .	1000
D	300	"Alcai	300	300	72000	300
с	40	414	40	40		40
d	247.0	1.262.00	247.0	246.0	2020	246.0
f _{cd}	14.40	10.000	10.80	14.40	1.4.40	10.80
f _{Yd}	400	-them	400	400	denta	400
xu,sls/d	0.64	1015665	0.64	0.64	(i) (inter	0.64
$R_{als} = M_{u,als}/bd^2$	5.45	5.85	4.09	5.45	196407	4.09
M _{u.sls} (KNm)	333	396	250	330	3280	248
	OK	0.0.2.	OK	OK	(0)(2, -)	OK
Ast Req.	194	100	179	444	1.82	349
Dia of bar (main tension) (mm)	10	007	10	12	(III)	12
Spacing (mm)	200	2000 C	200	100) <mark>(</mark> 1020	100
+ dia of bar (main tension) (mm)	10) (tim	10	0	UR.	0
Spacing (mm)	200	300	200	200	36030	200
Ast provided (sq mm)	785	1031	785	1131	04	1131
Dia of bar (main compresion) (mm)	0	1011	0	10	1000	10
Spacing (mm)	200	Bittin	200	200	Triputio	200
Area of main compression (mm ²)	0	(0)	0	393	1993	393
feten	2.5	2,51	2.5	2.5	7.57	2.5
x (mm)	27.0	102:55	35.9	38.8	00.000	51.7
x/d	0.109	UNDESS	0.145	0.158	00 10:0:31	0.210
	OK	633.2	OK	OK	00) 4.	OK
z (mm)	236	347 . A	232	230	18-00 pinna	224
MR _{als} (KNm)	74	St. 13	73	104	NUM ANCOMENT	102
	OK	004	OK	OK	Serentz.	OK
$s_{sc} = M/(A_s z)$	103	2023	96	164	差到很多时	132
	OK	0774	OK	OK	ž msao	OK
$s_{ca} = M/(0.8095 zb x_u)$	3.69	Miles.	2.59	5.90	é manu	3.55
	OK	0.02	OK	OK	A 1012 800	OK

V. SUMMARY AND CONCLUSIONS

An investigation of the design of a concrete RCC Box is conducted in this thesis. Results reveal that in most situations, models and manual approaches for structural analysis are indistinguishable. If care is not taken while modelling according to certain concepts, unintentional constraints may end up being included. This might have a significant impact on the reaction, but it's tough to tell whether you're looking at ULS or SLS envelopes. Modeling using rigid

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580|

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

shell parts at frame corners produced unintended constraint most often. It was determined that errors and undesirable outcomes might be readily caused by a lack of verification and difficulty in comprehending data.

It is possible for a building engineer to be flexible in developing model analysis models as the impact of model development decisions is generally small, as long as errors are avoided. A model's accuracy doesn't matter as much as if it doesn't introduce any mistakes, since the differences between models are so minor. For the sake of simplicity, we may claim that avoiding mistakes is more essential than modelling precisely. In order to avoid mistakes in 3D modelling, an analytical model should be readily tested with smaller models.

It is important to note that these recommendations only apply to building constructions; when analyzing the reaction of existing structures, alternatives are required.

Culverts were fixed using STAAD PRO. Manual solutions and commercially available software (STAAD PRO) were compared to see how they fared.

As a precautionary measure against foundation collapse and to keep excessive settlement and differential settlement at bay, it is essential that the net maximum bearing pressure beneath the structure's foundation be compared to the safe maximum ground pressure.

Overheating of the visible soil connector or excessive soil fluctuations may result in the collapse of the entire structure. Before making a final design for a building, two conditions must be considered to determine whether the proposed geometry and the structural design are appropriate or not.

Critical loading conditions are assessed, and Limit State concepts are used for the construction of building and foundation components. The end-to-end condition and the performance-level condition are checked.

VI. CONCLUSIONS

Stead ORO software was used to examine the RCC box culvert's limit state performance under both ultimate and serviceability limit state techniques. This study's key finding is that RCC box culverts outperformed other culverts such pipe minor bridge slab culverts, etc. when it came to constructing roads. In any case, the following are some of the particular findings of this research: Box culvert is used for cross drainage works across high embankments.

- It is easy to increase the length in the event of an extension of the road using STAAD PRO.
- The design of the box culvert is covered using three loading cases. Prices for design times etc.

Studies show that the best moment grows in the middle of the upper and lower slab in the case of hogging in the middle and support the collapsing moment to grow the sides of the collar that do not carry a live load and the culvert is full of water.

• Negative upper bouts featured two cutaways, for easier access to the higher frets.

• The negative maximum time increases between the vertical wall area where the culvert is fully operational and when the pressure on the same side due to the heavier set load only works.

• Large shear forces grow in the corner of the upper and lower slab where the culvert is full and the upper slab carries the dead and the living load.

| ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.580

Volume 9, Issue 6, June 2022

| DOI: 10.15680/IJMRSETM.2022.0906036 |

ltem	LSM 112:2011	IRC 21:200			
Top Slab	12@100 c/c	12@120 c/c			
Bottom Slab	12@100 c/c	12@130 c/c			
Side Wall	10@200 c/c	10@220 c/c			
Design Base	14.3 t/m2	10.17 t/m2			
Pressure					
SIZE					
Тор	300mm	280 mm			
Bottom	350 mm	350 mm			
Side Wall	300 mm	280 mm			

Limitation and future scope

Though care and attention have been devoted to many technical difficulties, the product is not technically sound or complete. However, the STAAD PRO and effective width approach, as well as the one used in the current research, both have their drawbacks. Shear forces are not included in the effective width technique per IRC 112:2011. Shear force diagrams are not depicted in the above chapter since they are not required for a shear check as mandated by the code, although bending diaphragms are. stiffness and strength to distribute stresses to all resistant parts Side components are connected to the rest of the wall in a variety of ways. Inelastic deformations were ignored in favor of an elastic method for assessing torsion effects. Some limitations are given bellow

Survival and appearance Shrinkage

- Due to vertical and horizontal loads, there will be an increase in the pressure on the ground.
- Surcharge
- Top slab should have a uniform temperature change and a gradual temperature gradient.
- This includes lateral and horizontal loading caused by acceleration and braking in accordance with IRC 6:2017.
- Load combinations for ULS are also included in the studies.
- Load combinations included in the analyses include load combination for SLS

REFERENCES

- 1. Reinforced concrete structure; volume:2; DR.B.C. PUNIMA, ASHOK.K. JAIN, ARUN.K. JAIN.
- 2. Design of bridge structure; T.R. JAGADEESH, M.A. JAYARAM
- 3. IRC: 6-2017, "Standard Specifications and Code of Practice for Road Bridges", Section II
- 4. IRC: 5-195, "Standard Specifications and Code of Practice for Road Bridges",
- 5. SINHA & SHARMA ON Journal of the Indian Roads Congress, October-December 2009.
- 6. Y. Vinod Kumar, Dr. Chava Srinivas IJESR/ July 2015/ vol-5/ issue-7/850-861 international journal of engineering & science research.
- 7. IRC: 112-2011, "Code of Practice for Concrete Road Bridges"
- 8. IRC 105 : 2015 Explanatory-handbook-to-irc-112-2011
- 9. Concrete road bridges structure; V.K.Raina
- 10. IRC-78-2000 Foundation and substructure
- 11. STANDARD PLANS FOR HIGHWAY BOX
- 12. IRC:SP: 13:2000 Guideline for small bridges and culverts

INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH

IN SCIENCE, ENGINEERING, TECHNOLOGY AND MANAGEMENT

+91 99405 72462

🕥 +91 63819 07438 🔀 ijmrsetm@gmail.com

www.ijmrsetm.com