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ABSTRACT: This paper deals with the study of a smooth dynamic punch situated along the boundary of a 

transversely isotropic half-plane. The complex variable technique has been adopted to obtain closed form solution of 

the elastodynamic punch problem. The stress and displacement fields are expressed in terms of two analytic functions 

in appropriate complex domains. The boundary value problem has then been solved using Riemann-Hilbert technique. 

Expressions for the contact pressure and resultant moment of external forces restraining the stamp are obtained in 

closed form.  
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I.  INTRODUCTION 
 
Punch problems belong to a certain class called contact problems within the theory of elasticity. Contact problems are 

related to the name of Hertz, who first in 1882 successfully treated a static contact problem. Discussions on punch 

problems in isotropic media are abundant. Detailed reference in this direction may be found in the book of Gladwell 

[1980]. Contact problems in anisotropic meida under dynamical conditions are comparatively difficult due to their 

inherent mathematical complexities. Some significant works on contact problem in anisotropic media by several 

authors are referred to as Willis [1966], Beddings and Willis [1973], Miller [1986] and Fabrikant [1986]. The punch 

problem is of great importance in solid mechanics for its multiple technical applications including ballistic impact, 

explosives, metal forming and manufacturing operations such as punching and blanking. While the quasi-static punch 

problem is a well-studied field in contact mechanics (Johnson [1987], Gladwell [1980]), there is a little work on the 

dynamic case. In the dynamic case the punch approaches the material with a certain velocity, hence wave propagation 

is involved complicating the mathematical analysis. Brock [1983, 1996] considered the problem of rapid indentation of 
an isotropic half-plane by a smooth, flat and rigid semi-infinite punch. Punch geometries other than flat, have been 

considered even for general anisotropic materials for example parabolic and wedge shaped punches, (Willis [1973]; 

Georgiadis and Brock [1995]). In those problems the contact area grows at constant speed and self-similar feature of 

the dynamic fields is exploited using the general methodology derived by Willis [1973] for such kind of problems. The 

dynamic, flat finite punch problem in isotropic materials was considered by Roessig and Manson [1998]. They solved 

an equivalent problem where the rigid punch is replaced by a compressive wave impinging two semi-infinite external 

cracks. In current years, very few works have been done on punch problems among which Guler [2014] studied closed 

form solution of the two-dimensional sliding frictional contact problem for an orthotropic medium. Bedoidze and 

Pozharskii [2014] studied the interaction of punches on a transversely isotropic half-space. Srefan Rasche and 

Meinhard Kuna [2015] studied improved small punch testing and parameter identification of ductile to brittle materials. 

Zhou and Lee [2014] studied dynamic behavior of a moving frictional punch over the surface of anisotropic materials.  

The present work deals with the study of elastodynamic problem of a smooth punch moving with constant speed c in 

the x-direction and situated along the boundary of a transversely isotropic half-plane. By representing the stress and 

displacement components in terms of two holomorphic functions defined in appropriate complex domains, the problem 

is solved by Riemann-Hilbert technique. Expressions for contact pressure and resultant moment of external forces 

restraining the stamp are obtained in closed form. 
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II. PROBLEM FORMULATION 
 
2.1 Basic equations: 
 

 Let a transversely isotropic medium be referred to as Cartesian coordinate system. The stress-strain relations in matrix 

form are 
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where 
ij  is the stress tensor, 

ijC  are elastic constants, 
ije  are the components of strain tensor. 

The strain-displacement relations are  
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where  wuvuuu  321 ,,  are the displacement components and  zxyxxx  321 ,,  are cartesian 

coordinates. 

Considering the problem to be restricted to motion in the xy-plane, the displacement equations of motion are 
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(2.1.1) 

 

The stress-displacement relations are given as  
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2.2 Formulation of the Problem: 
 
By setting Galilean transformation 

 

                                                                                  (2.2.1)  

the system of equations (2.1.1) reduces to 

,,, ttyYctxX 
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where c  is a constant,     IYXvvYXuu ,,,,   is 4x4 identity matrix and A  is a 4x4 matrix given by  
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The Eigen values of matrix A are given by iqip  ,  
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in which 111 42  a  and 12 a . 

We now consider the transformation    YXTYX ,,    ,                     (2.2.3) 

where 
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          .                        (2.2.4) 

 

It can be shown that  2,1jj and  4,3kk are pairs of conjugate harmonic functions into 11 iYXZ   

and 22 iYXZ   plane respectively with pYY 1 , qYY 2 . 

By setting   2111  iz   ,   4322  iz   , the stress field can be expressed as 
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The corresponding displacement components are 
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where 
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2.3 Boundary Conditions: 
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Fig.1: Dynamic punch on elastic half-plane situated on a line segment. 

 

We consider a semi-infinite transversely isotropic plane ( 0y ) in which there is a punch defined by 

0,  YaX and moving with constant speed c along the positive x-axis as depicted in figure 1. The boundary 

conditions of the problem are 

 

    aXXfXv  ,0,                                                                   (2.3.1) 

  aXXYY  ,00,                                                                   (2.3.2) 
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   XXXY ,00,                                                                 (2.3.3) 

 jXYYYXX Z,0,,          .                                                     (2.3.4) 

 

III. SOLUTION OF THE PROBLEM 
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  , the stress components in (2.2.5a)-(2.2.5c) may be 

written as follows: 
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Boundary condition (2.3.3) in conjunction with XY  in (3.1)
 
lead to  
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Using the symmetry property    
jjjj zz   , boundary conditions (2.3.1) and (2.3.2) by virtue of (3.2) on 0Y

, lead to 
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equations (3.3) and (3.4) under (3.5) reduces to the standard Riemann-Hilbert problem, 

 

     

    















.,000

,
2

00
65

22

aXiXiX

aX
ll

XfXa
iXiX

jj

jj




          (3.6) 

 
Following the method of Gakov [1966], solution of the problem (3.6) is given by  
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Using boundary condition (2.3.4),   0 jj z  as jz whence 0C , therefore  

    

















 1
22

65

0

az

z

lli

f
z

j

j

jj                                                            (3.9) 

Therefore, the stress components can be determined from (3.1).  

 

The expression for the contact pressure is given by  
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Resultant moment of external forces restraining the punch is given by 

 

 

                                                            (3.11) 

 

 

Now, considering the same problem in an isotropic half-plane and then by employing the same method of solution, the 

expression for the contact pressure and the resultant moment of external forces restraining the stamp are obtained in 

closed form. 

 

IV. NUMERICAL RESULTS 
 
As an illustration, the expression for the resultant moment of external forces restraining the stamp is computed 

numerically for various speed c and for different transversely isotropic material. The values of elastic constant have 

been taken from Lubarda and Chen [2008] and Dinesh et.al. [2012]. Numerical calculations are carried out by taking 

1a and 10 f  in the expression (3.11). 

The values of resultant moment of external forces restraining the stamp of transversely isotropic material viz. 

aluminium oxide, graphite and monocrystalline zinc for various crack speed are given in Table I. Similar results are 

also obtained for isotropic materials viz. alluminium and copper. 
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Table I: Values of resultant moment of different transversely isotropic material for various crack speed. 
 
 
 
 
 

 
 
 
                
 

 

 

 

The result obtained in Table I are then plotted graphically. Figures 2a, 2b and 2c shows the variation of resultant 

moment of external forces with various values of crack speed for transversely isotropic materials viz. alluminium 

oxide, graphite and monocrystalline zinc. 

 

 
Fig. 2a: M versus M2 for Aluminium Oxide. 

 

                  
 Fig. 2b: M versus M2 for Graphite.                                Fig. 2c: M versus M2 for Monocrystalline zinc. 
 
Now for isotropic materials, the variations of resultant moment of external forces with crack speed are depicted in 

figures 3a and 3b. 
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       Fig.3a: M versus M2 for Alluminium.                                               Fig. 3b: M versus M2 for Copper. 
 

V. CONCLUSION 
 
In this work, elastodynamic response of a smooth moving punch has been investigated. Resultant moment of external 

forces restraining the punch is obtained to study the numerical results. From figures 2-6, it is to be observed that 

resultant moment of external forces M , increases as crack speed increases. Nature of curves is same for both isotropic 

and transversely isotropic material. 
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